

BIPARTITE AND MULTIPARTITE ENTANGLEMENT IN RESONATING VALENCE BOND LADDERS

Himadri Shekhar Dhar School of Physical Sciences Jawaharlal Nehru University New Delhi 110067.

ISCQI, Bhubaneshwar 2011

BIPARTITE AND MULTIPARTITE ENTANGLEMENT IN RESONATING VALENCE BOND LADDERS

USING THE DENSITY MATRIX RECURSION METHOD

Himadri Shekhar Dhar School of Physical Sciences Jawaharlal Nehru University New Delhi 110067.

ISCQI, Bhubaneshwar 2011

- INTRODUCTION
- RESONATING VALENCE BOND LADDERS
- DENSITY MATRIX RECURSION METHOD
- CALCULATING ENTANGLEMENT
- ENTANGLEMENT PROPERTIES OF RVB LADDERS
- CONCLUSION

INTRODUCTION RESONATING VALENCE BOND (RVB) STATES

- INTRODUCED BY LINUS PAULING IN 1938
- P. W. ANDERSON, IN 1973, INTRODUCED RVB IN CONDENSED MATTER PHYSICS TO EXPLAIN MOTT INSULATORS
- RVB STATES WERE RELATED TO HIGH TEMPERATURE SUPERCONDUCTIVITY

• POSSIBLE USE IN TOPOLOGICAL QUANTUM COMPUTATION¹

¹A. Y. Kitaev, "Fault-tolerant quantum computation by anyons". Ann. Phys., Lpz. **303**, 2 (2003)

21/12/2011

INTRODUCTION RVB STATES USING BIPARTITE LATTICE

INTRODUCTION RVB STATES USING BIPARTITE LATTICE

$$|(a_1, b_1)\rangle$$
NEAREST NEIGHBOUR
SINGLET PAIR
$$1$$

$$\left[\prod_{(i,j)'} |(a_i, b_j)\rangle\right]_k = |(a_1, b_1)\rangle |(a_2, b_2)\rangle \dots |(a_N, b_N)\rangle$$

ONE POSSIBLE COMBINATION

$$|(a_1, b_1)\rangle$$
NEAREST NEIGHBOUR
SINGLET PAIR

$$\left| \prod_{(i,j)'} |(a_i, b_j) \rangle \right|_k = |(a_1, b_4)\rangle |(a_2, b_5)\rangle \dots |(a_N, b_N)\rangle$$

1

ANOTHER POSSIBLE COMBINATION

1

SUPERPOSITION OF ALL SUCH COMBINATIONS

INTERESTS

INTERESTS

- POSSIBLE GROUND STATES OF THE ANTIFERROMAGNETIC HEISENBERG MODEL
- EVEN LEGGED LADDERS RELATED TO HIGH T_C SUPERCONDUCTIVITY
- BIPARTITE AND MULTIPARTITE ENTANGLEMENT PROPERTIES IN RVB LADDER SYSTEMS HAVE INTERESTING PROPERTIES DEPENDENT ON GEOMETRY

RAIL

ISCQI 2011

GEOMETRY

OBTAINING THE RVB STATE

(NON PERIODIC BOUNDARY CONDITION)

OBTAINING THE RVB STATE

 $|(a_1,b_2)\rangle|(a_2,b_1)\rangle|(a_3,b_3)\rangle$

OBTAINING THE RVB STATE

RESONATING VALENCE BOND LADDERS OBTAINING THE RVB STATE

OBTAINING THE RVB STATE

5 terms in the superposition, with 16 terms in each. TOTAL=80 terms.

OBTAINING THE RVB STATE

OBTAINING THE RVB STATE

OBTAINING THE RVB STATE

21/12/2011

OBTAINING THE RVB STATE

21/12/2011

DENSITY MATRIX RECURSION METHOD¹ USING DMRM TO CALCULATE RVB LADDER STATES

- RECURSIVE METHOD TO CALCULATE THE RVB STATE FOR LARGE EVEN RUNG LADDER FROM SMALLER UNITS
- CALCULATIONS CAN BE EXTENDED TO LARGE NUMBER OF RUNGS
- ENABLES ANALYTICAL EXPRESSIONS TO COMPUTE **BIPARTITE** AND **MULTIPARTITE ENTANGLEMENT** FOR LARGE LADDERS.
- CAN BE USED TO CALCULATE OTHER FORMS OF CORRELATIONS

¹ H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

USING DMRM TO CALCULATE RVB STATES

BASIC BLOCK

USING DMRM TO CALCULATE RVB STATES

USING DMRM TO CALCULATE RVB STATES

USING DMRM TO CALCULATE RVB STATES

USING DMRM TO CALCULATE RVB STATES

USING PERIODIC BOUNDARY CONDITIONS:

USING DMRM TO CALCULATE RVB STATES

USING PERIODIC BOUNDARY CONDITIONS:

USING DMRM TO CALCULATE RVB STATES

GENERALIZING FOR MULTI-LEG PERIODIC LADDER :

USING DMRM TO CALCULATE RVB STATES

GENERALIZING FOR MULTI-LEG PERIODIC LADDER :

EVEN LEG
$$\begin{bmatrix} |N+2\rangle_{1..N+2} = |N\rangle_{N}|2'\rangle_{N+1,N+2} + |N+1\rangle_{1..N+1}|1\rangle_{N+2} \\ |N+2\rangle_{1..N+2}^{p} = |N+2\rangle_{1..N+2} + |N\rangle_{2..N+1}|2\rangle_{N+2,1} \end{bmatrix}$$
ODD LEG
$$\begin{bmatrix} |N+2\rangle_{1..N+2}^{p} = |N\rangle_{1..N}|2\rangle_{N+1,N+2} + |N\rangle_{2..N+1}|2\rangle_{N+2,1} \end{bmatrix}$$

ROTATIONALLY INVARIANT

PERIODIC BOUNDARY CONDITIONS INTRODUCE A SYMMETRY

FOR BIPARTITE ENTANGLEMENT:

TRACE OUT ALL BUT ANY TWO SITES FROM THE DENSITY MATRIX OF THE RVB LADDER

OBTAIN THE TWO-SITE REDUCED DENSITY MATRIX

FOR BIPARTITE ENTANGLEMENT:

TWO SITE DENSITY MATRIX IS ROTATIONALLY INVARIANT $\rho_{12} = \mathrm{Tr}_{\overline{12}} |N\rangle\langle N|$

21/12/2011

FOR BIPARTITE ENTANGLEMENT:

TWO SITE DENSITY MATRIX IS ROTATIONALLY INVARIANT $\rho_{12} = Tr_{\overline{12}} |N\rangle\langle N|$ HENCE WERNER

STATE

$$p_{12}(p) = p \left| (a_i, b_j) \right\rangle \langle (a_i, b_j) \right| + \frac{1-p}{4} I_4$$

WERNER PARAMETER CAN BE USED TO CALCULATE ENTANGLEMENT

$$-\frac{1}{3} \leq p \leq 1$$

FOR MULTIPARTITE ENTANGLEMENT:

FIND THE 2-SITE, 3-SITE, 4- SITEN/2 SITE REDUCED DENSITY MATRIX.

APPLY THE GENERALIZED GEOMETRIC MEASURE (GGM)

$$\varepsilon(|\phi_N\rangle) = 1 - \max\{\lambda_{A:B}^2 | A \cup B = \{1, 2, \dots, N\}, A \cap B = \emptyset\}$$

CALCULATING ENTANGLEMENT

USING DENSITY MATRIX RECURSION METHOD

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

CULATING ENTANGLEMENT USING DENSITY MATRIX RECURSION METHOD EVEN LEG $\begin{bmatrix} |N+2\rangle_{1..N+2} = |N\rangle_{N}|2'\rangle_{N+1,N+2} + |N+1\rangle_{1..N+1}|1\rangle_{N+2} \\ |N+2\rangle_{1..N+2}^{p} = |N+2\rangle_{1..N+2} + |N\rangle_{2..N+1}|2'\rangle_{N+2,1} \end{bmatrix}$ RECALL ODD LEG $|N+2\rangle_{1..N+2}^p = |N\rangle_{1..N}|2\rangle_{N+1,N+2} + |N\rangle_{2..N+1}|2\rangle_{N+2,1}$ EVEN LEG $\int \rho_{N+2}^{p} = |N+2\rangle \langle N+2|_{p}$ = $|N+2\rangle \langle N+2| + |N+2\rangle \langle N|_{2,N+1} \langle 2'|_{N+2,1}$ + $|N\rangle_{2,N+1} |2'\rangle_{1,N+2} \langle N+2|$ + $|N\rangle \langle N|_{2,N+1} |2'\rangle \langle 2'|_{N+2,1}$ DFNSITY MATRIX ODD LEG $\rho_{N+2}^p = |N+2\rangle \langle N+2|_p$

TWO RUNG REDUCED DENSITY MATRIX

TWO RUNG REDUCED DENSITY MATRIX

TWO RUNG REDUCED DENSITY MATRIX

TWO RUNG REDUCED DENSITY MATRIX

 $\langle \bar{2}|_{1,n+2} \langle \mathcal{N}-1|_{2,n} \mathcal{N}-1 \rangle_{1,n-1} |1\rangle_n$, and $\mathcal{A} = \langle 1|1\rangle = \langle \bar{1}|\bar{1}\rangle$. S Dhar A Sen (De) and U Sen Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishe

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

21/12/2011

21/12/2011

 $\mathcal{A}, \bar{\mathcal{A}}, \mathcal{B}, \mathcal{C}, \bar{\mathcal{C}}, \mathcal{D}, \bar{\mathcal{D}}, \mathcal{Z}_1, \mathcal{Y}_1^1, \text{ and } \mathcal{Y}_1^2$

Specifically, for M = 2, the relevant initial parameters are $\mathcal{Z}_0 = 1$, $\mathcal{Z}_1 = 2$, $\mathcal{A} = 2$, $\bar{\mathcal{A}} = 2$, $\mathcal{C} = 1$, $\mathcal{D} = 0$, $\bar{\mathcal{C}} = 0$, $\bar{\mathcal{D}} = 0$, $\mathcal{Y}_1^1 = 2$, and $\mathcal{Y}_1^2 = 0$. For M = 4, the initial parameters are $\mathcal{Z}_0 = 1$, $\mathcal{Z}_1 = 4$, $\mathcal{A} = 4$, $\bar{\mathcal{A}} = 2$, $\mathcal{C} = 5$, $\mathcal{D} = 1$, $\bar{\mathcal{C}} = 2$, $\bar{\mathcal{D}} = 3$, $\mathcal{Y}_1^1 = 4$, and $\mathcal{Y}_1^2 = 2$. A similar

ADVANTAGES:

- CAN BE USED TO CALCULATE LONG MULTI- LEG LADDERS
- CAN BE EXTENDED TO MULTI-LEG LADDERS AS LONG AS BASIC UNIT IS TRACTABLE
- CONVENIENTLY MEASURES MULTISITE REDUCED DENSITY MATRIX.

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> BIPARTITE ENTANGLEMENT

A. Chandran, D. Kaszlikowski, A.Sen De, U. Sen, and V. Vedral, *Phys. Rev. Lett.* **99**, 170502 (2007). H. S. Dhar and A. Sen De, *J. Phys. A: Math. Theor.* 44 465302 (2011).

21/12/2011

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> BIPARTITE ENTANGLEMENT

Results contrast the analytical results obtained for an isotropic 2D or 3D RVB bipartite lattice.

A. Chandran, D. Kaszlikowski, A.Sen De, U. Sen, and V. Vedral, *Phys. Rev. Lett.* **99**, 170502 (2007). H. S. Dhar and A. Sen De, *J. Phys. A: Math. Theor.* 44 465302 (2011).

21/12/2011

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> MULTIPARTITE ENTANGLEMENT

A. Chandran, D. Kaszlikowski, A.Sen De, U. Sen, and V. Vedral, *Phys. Rev. Lett.* **99**, 170502 (2007). H. S. Dhar and A. Sen De, *J. Phys. A: Math. Theor.* 44 465302 (2011).

21/12/2011

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> MULTIPARTITE ENTANGLEMENT

A. Chandran, D. Kaszlikowski, A.Sen De, U. Sen, and V. Vedral, *Phys. Rev. Lett.* **99**, 170502 (2007). H. S. Dhar and A. Sen De, *J. Phys. A: Math. Theor.* 44 465302 (2011).

21/12/2011

A. Chandran, D. Kaszlikowski, A.Sen De, U. Sen, and V. Vedral, *Phys. Rev. Lett.* **99**, 170502 (2007). H. S. Dhar and A. Sen De, *J. Phys. A: Math. Theor.* 44 465302 (2011).

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> ANALYTICAL BOUNDS

Monogamy bound

H. S. Dhar and A. Sen De, J. Phys. A: Math. Theor. 44 465302 (2011).

21/12/2011

ENTANGLEMENT PROPERTIES OF TWO-LEG <u>RVB LADDERS</u> ANALYTICAL BOUNDS

H. S. Dhar and A. Sen De, J. Phys. A: Math. Theor. 44 465302 (2011).

21/12/2011

RVB LADDERS

ANALYTICAL BOUNDS

Bound on p-rung and p-rail

H. S. Dhar and A. Sen De, J. Phys. A: Math. Theor. 44 465302 (2011).

21/12/2011

ENTANGLEMENT PROPERTIES OF TWO-LEG RVB LADDERS ANALYTICAL BOUNDS 0.6 THE CHANGE IN BEHAVIOR OF THE ENTANGLEMENT CAN BE UNDERSTOOD USING SIMPLE QIT PRINCIPLES

H. S. Dhar and A. Sen De, J. Phys. A: Math. Theor. 44 465302 (2011).

ENTANGLEMENT PROPERTIES OF MULTI-LEG <u>RVB LADDERS</u> USING DENSITY MATRIX RECURSION METHOD

<u>DMRM</u>

An analytical iterative technique to obtain the reduced density matrix of an arbitrary number of sites of a quantum spin-1/2 Heisenberg Ladder with an arbitrary number of legs and with both open and periodic boundary conditions.

$$\begin{split} |\mathcal{N}+2\rangle &= |\mathcal{N}+1\rangle |1\rangle_{n+2} + |\mathcal{N}\rangle |\bar{2}\rangle_{n+1,n+2} \\ &= |\mathcal{N}\rangle |2\rangle_{n+1,n+2} + |\mathcal{N}-1\rangle |\bar{2}\rangle_{n,n+1} |1\rangle_{n+2} \\ \rho_{P(n+1,n+2)}^{(2)} &= \operatorname{tr}_{1..n} (|\mathcal{N}+2\rangle \langle \mathcal{N}+2|_{P}) \\ \rho_{P(n+1,n+2)}^{(2)} &= \rho_{n+1,n+2}^{(2)} + \operatorname{tr}_{1..n} [|\mathcal{N}\rangle \langle \mathcal{N}|_{(2,n+1)} |\bar{2}\rangle \langle \bar{2}|_{(1,n+2)} \\ &+ (|\mathcal{N}\rangle_{2,n+1} |\bar{2}\rangle_{1,n+2} \langle \mathcal{N}+2| + h.c.)] \end{split}$$

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

EVEN LEG LADDER MULTIPARTITE ENTANGLEMENT DECREASES

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

ODD LEG LADDER MULTIPARTITE ENTANGLEMENT INCREASES

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

RVB LADDERS

USING DENSITY MATRIX RECURSION METHOD

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

21/12/2011

IN CONCLUSION

- RVB LADDERS STATES HAVE INTERESTING PROPERTIES
- THE BIPARTITE AND MULTIPARTITE ENTANGLEMENT IS DEPENDENT ON THE GEOMETRY OF THE LADDER
- EXACT SOLUTIONS OF RVB STATES ARE DIFFICULT
- USING A RECURSION TECHNIQUE LIKE DMRM ONE CAN REDUCE THE CALCULATION OF REDUCED DENSITY MATRICES TO ANALYTICAL FORMS
- CAN BE USED TO CALCULATE LARGE SYSTEMS FOR MULTISITE CORRELATIONS

Journal of Physics A Mathematical and Theoretical

Volume 44 Number 46 18 November 2011

Topical review Lectures on localization and matrix models in supersymmetric Chern–Simons-matter theories Marcos Mariño

iopscience.org/jphysa

IOP Publishing

H. S. Dhar and A. Sen De, *Entanglement in resonating valence bond states: ladder versus isotropic lattices*, J. Phys. A: Math. Theor. 44 465302 (2011).

H. S. Dhar, A. Sen (De) and U. Sen, *Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders*, arXiv:1110.3646v1 [quant-ph] (2011).

THANK YOU.